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Abstract-An analysis is presented concerning the dynamic-bias which appears in radiation interrogation of 
fluctuating two-phase flow. It is shown that in certain cases it is possible to obtain closed form expressions 
for the dynamic-bias. Based on these analytical and calculational results, conditions are enumerated which 

must be emphasized if the dynamic-bias is to be minimized. 

INTRODUCTION 

THE USE of various radiations as an interrogation 
tool in two phase flow studies has in recent 
years become firmly accepted [l-4]. Con- 
current analytical and empirical investigations 
have been pursued to examine the uncertainty 
in such measurements attributable to instru- 
mentation characteristics and effect of steady- 
state flow orientations [4-73. Additionally, it 
has recently been shown that in such experi- 
ments the dynamic characteristics of the voids 
can lead to a most significant bias in the 
experimentally measured void fraction [8]. 

The identification of a bias attributable to 
flow voiding characteristics, herein to be desig- 
nated as the dynamic-bias, now requires that 
the various contributing system parameters be 
identified. In addition, it is necessary to deter- 
mine the relative effect of various time-depen- 
dent void fluctuations. An understanding of 
these factors would, first, clarify the mathema- 
tical-physical description of a. radiation beam 
in its passage through a dynamic medium, 
second, provide guidance in the specification and 
design of experimental systems and, third, 
provide an indication of the relative severity of 
different flow conditions with respect to the 
dynamic bias. 

Here, we summarize the mathematical des- 

cription of radiation transmission through a 
two-phase flow system. Subsequently, we des- 
cribe the derivation of some dynamic-bias 
representations appropriate to specific voided 
flow conditions. Finally, we enumerate several 
conditions which must be emphasized in the 
general application of radiation transmission 
in voided flow if the dynamic-bias is to be 
minimized. 

DESCRIBING EQUATIONS 

We consider a voided channel for which the 
void fraction at any time along its traverse may 
be designated by a(r). The mean void fraction 
during the time interval r is defined by 

In the Appendix we derive the general ex- 
pression for the transmission of a beam of 
radiation through a voided channel. The ex- 
pression for the radiation transmittance follows 
directly and is given by 

1 

(2) 
0 
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where ,I = pox0 is ,the channel thickness in 
units of mean-free-path with p0 as the linear 
attenuation parameter and x0 the distance 
between the containment walls. 

We will find it convenient to introduce a 
reference void, M, and a reference transmittance, 
T,. The reference void describes time indepen- 
dent voiding and hence is equal to the average: 

T 

(a), = i a,dt, 
s 
0 

= a,. (3) 

The reference transmittance, T, is defined in 
terms of this reference void, a,, and is given by 

=e -24-Q 
(4) 

DYNAMIC-BIAS REPRESENTATION 

The dynamic-bias representation which we 
seek is to express the deviation from the mean 
void, (a), when the steady-state assumption has 
been made to identify the reference void, a,. We 
therefore define this dynamic-bias by the dif- 
ference between the reference void and the 
mean void 

Aa = a, - (a) (5) 

where (a) is given in terms of u(t) by equation 
(1). An expression for the reference void, LX,, 
in terms of cc(t) is found from the following 
considerations. Recognizing that a given trans- 
mittance, T, can be associated with any number 
of different void variations, a(t), we may there- 
fore equate equation (4) with equation (2) 

-q-up) _ 
e-A z 

e _- 
z s eh(') dt, 

0 

(6) 

and solve for a, to yield 

(7) 

Substituting this expression together with equa- 
tion (1) into equation (5) yields the dynamic-bias 
as a functional of the void variation, a(t): 

By direct substitution, we can show that 
Aa = 0 if z(t) is a constant; hence, no bias is 
encountered if the steady-state assumption, 
equation (4) is applicable. For the case of void 
build-up during time z, for example, the result 
is significantly different as can be shown. Thus, 
in this case we write 

a(t) = pt, Cl<,%! 
IT’ (9) 

and substitute it into equation (8) to obtain 

= iln 
sin h(il( a)\ 

Kc0 J 

Here, for algebraic simplicity, we have sub- 
stituted for /I using the definition for (M); 
thus, we must observe the constraint 

(11) 

The non-linearity of equation (10) does not 
render the dependence of Au on the several 
system parameters very obvious. However, if 
we expand equation (10) and retain only the 
leading terms we get the following approxima- 
tion for the dynamic-bias: 

AM N n(a’2 _ lg2 ” 
6 24 ’ 

Here we now note the 

n(a) < $3. (12) 

importance of, first, 
an experimental system parameter as represen- 
ted by ;1 = pOxo, second, the experimental 
procedures as represented by r, and third the 
fluidic conditions as represented by j3. Minimi- 
zation of the dynamicerror requires that the 
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various parameters be chosen in accordance with 
equation (12). The sensitivity of Aa to changes 
in pot x0, p and z can be established by the usual 
differential procedures; also, a fractional dyna- 
mic-basis representation follows directly from 
equation (12). 

The dynamic-bias representation for the case 
of void depletion follows in a similar manner. 
For this case we write 

a(t) = 1 - fit, OC&, (13) 

and following substitution into equation (12), 
we can show that 

A+n 
sinh [2((a) - l)] 

A(<@> - 1) ’ 
(14) 

where we require 

1 Pr 
2 

< (a) = 1 - y < 1. (15) 

The conclusions from this result can be shown 
to be identical to those applicable to the void 
build-up, equation (10). 

In the above analysis we derived dynamic- 
bias representations for transient conditions 
during time z. A contrasting but frequently 
encountered problem is that of steady-state 
fluctuations about a mean. Such a case arises 
in bubbly flow which we may describe by the 
following. We divide the time interval r into 
N equal interval of width w and specify a(t) by 

<a> - E, 
w 

t,-1 < t < t,_, + -. 
2 

a(t) = (16) 

(a) + =% t,,++t., 

e”((l”> + ~1 dt + 

= i In jcosh (As)). (17) 

It is significant to find that the periodicity of the 
fluction has no effect on the dynamic-bias. 
The medic thickness expressed in units of 
mean-free-path and the amplitude are, in this 
case, the important parameters. 

A principle relation of interest becomes again 
clear if we expand equation (17) and retain 
only the dominant terms: 

Aa - E 
* 2’ 

IE < J2. (18) 

The square of the amplitude, E’, and the thick- 
ness of the medium in units of mean-free-path, 
J, are thus the determining factors which lead 
to the dynamic-bias. 

For a distinct class of void variation to be 
examined we consider exponential void build- 
up during time 2. The corresponding expression 
for a(t) which we choose to use is given by 

a(t) = 1 - eeot. 09) 

Here, the parameter o depends upon the mean 
void; using equation (1) it is readily shown that 
o must satisfy the transcendental equation 

ewr + wz - 1 
(a) = oz . (20) 

for n = 1,2,3,. . . , N. Here, the amplitude E Due to the algebraic intractability of the error 
must be chosen to insure that 0 G a(t) 6 1. representation for this case it is necessary to 

The dynamic-bias representation, equation evaluate the dynamic-bias by direct integration 
(8), for this square-wave void fluctuation is of equation (8) subject to the condition imposed 
now given by by equation (20). The result for J. = 1.0, 2@ and 
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FIG. 1. Dynamic-bias for the case of exponential void build- 
updefined by c(tr) = I - e-Co’ 

3.0 as a function of (M) are shown in Fig. 1. Here 
note, first, the increasing dynamic-bias with 
increasing ,? and, second, a decreasing dynamic- 
bias for the two extreme cases of 7ero voiding 

and full voiding 
It is informative to compare the dynamic-bias 

attributable to the exponential void build-up 
with a general power law representation of 

voiding which leads to full voiding at time z. 

For this case we write 

where q can be shown to be related to the mean 
void by 

(22) 

We have evaluated the dynamic-bias, equation 
(8) using equation (21) for the void representa- 
tion. The results for J. = 2 are shown in Fig. 2 
together with the dynamic-bias arising from the 
exponential void build-up, equation (19). The 
noteworthy feature here, is the significant shift 
in the peak of the maximum dynamic-bias. Thus, 

0 I I \’ 

0 02 04 06 0.8 I 0 

Mean md. <a> 

FIG. 2. Effect of different void build-up conditions on the 
dynamic-bias for the case of i = 2.0. 

the maximum possible dynamic-bias is strongly 
dependent upon the time dependence of voiding 
during time z. 

DISCUSSION OF RESULTS 

It is informative to discuss the role of the 
several fluidic conditions as they relate to the 
fractional dynamic-bias, Acrl(a). In Fig. 3 we 
illustrate the property that for the linear void 
build-up and linear void depletion as well as 
for the exponential void build-up, most precise 
measurement can be made at conditions close 
to either zero or full mean-void; the largest 
fractional dynamic-bias occurs for (a) 2 0.5. 

The results from a similar analysis of the 
fluctuating void (square-wave) variation is sig- 
nificantly different. For the case of constant 
deviation from the mean void the fractional 
dynamic-bias increases significantly with de- 
creasing mean void fraction, Fig. 4; if on the 
other hand the deviation E in a linear function 
of the mean void fraction then the fractional 
dynamic-bias increases with (LX). 

Similarly, contrasting results emerge from a 
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FIG. 3. Fractional dynamic-bias for the case of linear and 
exponential void fraction variations all for 1 = 2.0. 
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FIG. 4. Fractional dynamic-bias for the case of steady-state 
(square-wave) fluctuation with different amplitudes. 

comparison of the two void build-up represen- 
tations. For the exponential case, equation (19), 
the fractional bias is zero in the limits of (CX) = 0 
and (a) = 1 but reaches a maximum in between ; 
its maximum value is 4.9 per cent for A = 1 
and 9.2 per cent for I = 2 with both of these 
extrema close to (c() 1: 0.52. However, for 
the power law void build-up, equation (21), the 
fractional bias increases monotonically with 
decreasing mean void, (a) ; its maximum 
exceeds 30 per cent for A = 1 and approaches 
82 per cent for 1 = 2 in the limit as (a) becomes 
vanishingly small. These results forcefully em- 
phasize the importance of void variations on the 
uncertainty in a measured void fraction. 

These results serve well to indicate the im- 
portance of fluidic conditions and other systems 
parameters in the determination of the void 
fractions by radiation interrogation. Several 
criteria can be cited to provide some guidance 
for such measurements. 

1. The thickness of the fluid, measured in 
units of mean-free-path, is an important con- 
tributor to the dynamic-bias; this contribution 
can be minimized by using thinner test sections 
and/or using radiation and media with a low 
linear attenuation parameter. 

2. Transient void variations lead to a lesser 
dynamic-bias in the limits of zero and full 
mean voids; this variation, however, is not 
symmetric about (a) = 0.5. The fractional 
dynamic-bias may, in some cases, attain a maxi- 
mum and in other cases increase with decreasing 
mean void (a). 

3. Fluctuating voids contribute to an in- 
creasing fractional dynamic-bias with decreasing 
mean void if the deviation is independent of the 
mean void and to an increasing fractional 
dynamic-bias with mean void if the deviation is 
a function of (a). 

In addition to these criteria, it appears that a 
recently explored radiation gating procedure 
[9] might prove particularly useful in such void 
fraction measurements which are characterized 
by strong fluctuations. As shown [lo], the 
appropriate transformations from the trans- 
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mitted signal to the void fraction distribution 
can provide useful additional information. 
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APPENDIX 

We consider a narrow, collimated, monoenergetic and 

time-independent beam of penetrating radiation directed 

perpendicularly toward a planar channel of liquid con- 

taining vertically upwardmoving voids q shown in Fig. 5. 

The void fraction at time t along the path of radiation is 

defined by 

c Ax:(t) 

(A.11 
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lncldent 
beam 

6 E 

FIG. 5. Schematic representation of 
channel. 

voided liquid flow 

Recognizing that the total path length through the liquid 

medium may be written as 

xO[l - a(t)] = x0 - c Ax,(t). (A.21 

permits relating the incident radiation beam to the emerging 

radiation beam by the expression 

,(+ + 26) = I(O) e-8&e- roxn[l --w1, (A.31 

In this representation we have defined p’p and p0 as the linear 

attenuation parameters for the channel containment walls 

and the liquid medium, respectively. It has been assumed that 

radiation attenuation in the voids can be neglected; it is a 

straightforward extension to include attenuation in the void, 

if warranted by inclusion of the appropriate exponential 

factor in equation (A 3) SimilarI!. refractive effects of the 

two media on the probing radiation have not been included 
The detector response without the hquid medium in the 

channel is given by 

R, = f ~l(0)e~“pZddt. 
0 

= cl(O) eeup2’ z, (A.31 

where < is the detector efficiency. Similarly, with the voided 

liquid in the channel, we write 

R, = [Cl(O)e- ,‘p26 em ,‘“roll -U(r)] dl. 

= :1(o) e-rc.Zd emrrolo ,[ eao.% a(:) d[, (A-5) 

The radiation transmittance, defined by the transmission 

fraction R,/R,, is thus a functional of a(t): 

Note that this analysis does not incorporate spatial 

effects due to beam-area or variations of a with x. 
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DEVIATION DANS L’EXPLORATION PAR RAYONNEMENT D’UN ECOULEMENT 
BIPHASIQUE 

R&mm&On prtsente une analyse de la dCviation qui apparait dans l’exploration par rayonnement 
d’un tcoulement biphasique fluctuant. On montre qu’il est possible dans certains cas d’obtenir des expres- 
sions analytiques de la diviation. BasCessur ces rtsultats thtoriques, on donne des conditions exploitables 

si la dCviation est minimiske. 

DIE DYNAMISCHE VERZERRUNG BE1 STRAHLUNGSRECHNUNGEN IN 
ZWEI-PHASENSTROMUNG 

Zllsmlmenf WEine Analyse der dynamischen Verzerrung bei Strahhmgsrechnungen in fluk- 
tuierender Zwei-PhasenstrBmung wird angegeben. Es wird gezeigt, dass es in bestimmten FLllen mijglich 
ist, geschlossen darstellbare Ausdrilcke fiir die dynamische Verzerrung zu erhalten. Auf Grund dieser 
analytischen und rechnerischen Ergebnisse werden die Bedingungen aufgezmt, unter denen die dynamische 

Verzerrung minimalisiert werden kann. 

JJkIHAMIJ=IECKOE CMEuEHElE IIPkl BOBflEnCTBHB I13JIYYEHBH 
HA ABYXaA3HOE TE=IEHklE 

hiEOT&XI(EsI-flaeTCH aHam gkiHaMwiecKor0 CMeIIJeHwI, rIOF1BnmoIIJerOCR npkl B03AetiCTBIJEf 

n3nyseHm Ha nynbcapyroorrlee nByx@aaHoe Te9eAne. HoKa3aH0, ‘~TO B onpc~eneaabrx 
CJIJ’=KlflX j?(JIR RHHaMH'leCKOrO CMeQeHHH MOWEHO IIOJIyWITb BbIpaHEeHHR B 3aMIEHxTOM Bkige. 

Ha 0cHoBe pe3ynbTaTos aHam3a ti pameTa nepemxmoTcff ymoBm, Ha KoTopbIe menyeT 

06paTHTb BHHMaHtie,9T06bI CReCTLI ,qO MIiHHMyMa AllHaMHYeCKOe CMeIqeHrle. 


